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APPROXIMATIONS TO AND LOCAL PROPERTIES OF 

DIFFUSIONS W I T H  DISCONTINUOUS CONTROLS 

Harold J. Kushner 

1. Introduction e 

The s tochast ic  d i f f e r e n t i a l  ( I to )  equation (1) 

dx = f (x , t , u (x , t ) )d t  + a(x,t)dz, 

where i s  a Wiener process, i s  a c m o n  model of a va r i e ty  of 

s tochast ic  cont ro l  systems. Most pas t  work has concentrated on the  

case where CI and u satisfy a Lipschitz (or possibly a Holder) 

condition i n  x, and f s a t i s f i e s  a s imilar  condition i n  x and u. 

This has been.so, owing t o  the  existence of a very nice theory of 

(1) under such conditions. Frequently, formal applications of 

dynamic programming y ie ld  t h a t  the optimal cont ro l  has surfaces of 

discont inui ty  i n  x i  f o r  example, when f i s  l i n e a r  i n  u, and the  

cost  does not depend on u. Recently, i n  an in t e re s t ing  paper, 

Rishel [l] applied a transformation of Girsanov [ 2 ] ,  t o  construct a 

process of the  form (1) where 

and measurable, and proved some theorems concerning the  re la t ionship  

between t h e  formal dynamic programming equation for t he  cost ,  and 

the  optimal control.  

zt 

u i s  allowed t o  be merely bounded 

Several questions remain open for t he  process constructed 

i n  [l] or [ 2 ] .  Since u i s  not necessar i ly  uniformly Lipschitz, t he  
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question of uniqueness remains. In Theorem 1, we show tha t ,  under 

reasonable conditions, the process constructed i n  [l] and [2] i s  a 

very natural solut ion t o  (1) (whether or not it i s  the  unique solu- 

t ion) ,  s ince it i s  the  l i m i t  of the d i sc re t e  time approximation, i n  

the sense that the mult ivar ia te  d i s t r ibu t ions  converge. Uniqueness 

i s  then shown i n  Theorem 2. I n  Section 4, we replace the possibly 

discontinuous u by a sequence u which converges t o  u point- 

wise (except on t h e  s e t  of discont inui ty  of 

costs  of control  converge t o  t h e  cost  for t he  discontinuous controls.  

n 

u), and prove that  the 

Finally,  i n  Section 5 ,  we show t h a t  the l o c a l  and growth propert ies  

of (1) are of the sane type as fo r  Lipschitz u. The cont ro l  u i s  

fixed, and the  optimization problem i s  not t r ea t ed  here. Some 

approximation problems for the  optimization problem w i l l  be t r ea t ed  

i n  a companion paper. 



2, Assumptions, 

For a vector f and m a t r i x  u define t h e  norms 1 fl = 

1 2 (Al) t h e  vectors f (x , t ) , f  (x’t), and matrix u(x , t )  a r e  

Borelmeasurable i n  the  pair x , t ,  s a t i s f y  a uniform Lipschitz con- 

d i t i on  ( i . e - ,  I f (x , t )  - f (y , t ) I  5 Klx-yl 

a growth condition of the  type 1 f (x , t )  I 
f o r  a r e a l  number 

I_ < K(l+lxl ) 

K.)  and 

2 2 The matrix 

ct takes the  form 

r o  0 1 

where ^a(x, t)  has a uniformly bounded inverse ;-’(x, t) 

t h i s  implies that u (x,t)  s a t i s f i e s  a uniform Lipschitz condition i n  

Note t h a t  

*-1 

X. 

Let zt9 0 < t < T, be a Wiener process w i t h  respect t o  the  - -  
measure P ( 9  ) and define the  I t o  equation 

Assme t h a t  

1 

- 2  

f (x , t )dt  

f (x , t )d t  + $(x,t)dz, 
- d x =  

dx2 0 - -  < t < T. 

(A2) The uncontrolled process x given by ( 2 ) ,  has a t r ans i t i on  
t’ 

density p(x,t ;  y , t+s)  f o r  s > 0.  There a re  many important examples 

where t h i s  i s  the  case.  See E l l i o t t  [ ? I 9  Kushner [ k ] ,  Zakai [?] for some 
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equently occuring types of examples. 

Since t h e  control  u(x , t )  w i l l  appear i n  the  form 
n n n 
f (x , t )  E f(x,t,u(x,t)), only the  properties of 

x and t, will be important. For the  most pa r t  we will deal  only 

w i t h t h e  driving term f ( x , t ) ,  and delete  spec i f ic  reference t o  the  

control .  

f, as  a function of 

A 

n 
(A3) Assume t h a t  the  vector f(x,t)  i s  bounded and Bore1 

measurable i n  (x, t) 

(Al )  - (A3) are  t o  be used throughout. It w i l l  occasionally 
n 

be required t h a t  f (x , t )  

continuity s e t  

m i t e  ?(x, t) i n  the  control-dependent form f (x, t ,u(x,  t)), and 

t r a n s l a t e  (Ab) i n t o  properties of f and u.) Thus, we write, f o r  

be continuous, except on a nice d is -  

Dt, of  Lebesgue measure zero. ( O f  course, we can 
n 

n 

future  use, 

(Ab) Let Sm denote a sphere whose 

and with radius M,NE(A) an E: neighborhood 

the  Lebesgue measure of A. Suppose there  i s  

center i s  the  or igin 

of t he  s e t  A, and p(A),  

a s e t  Dt (discont inui ty  

s e t ) ,  so t h a t  f o r  each M and t, 0 S t 5 T, p(N (D n S )) + O  as + E + O .  
E t  M 

For each E' > 0, l e t  there  e x i s t  an E > 0 so t h a t  lx-yl < E implies 

} ?(x , t )  - f (y , t )  1 < 
6 

(uniformly i n  x),  provided t h a t  x ,d NE(Dt). 

The control  system t o  be considered has the form 

f ( x , t ) d t  + cr(x,t)d?, 

t 
Note t h a t  (A2) and (Ab) imply t h a t  Px {Xt+, N,(Dt+, 

E -+ 0, where Px (.) i s  the probabi l i ty  ( fo r  (2)) conditioned on x 
S 

s S 



N N 

where z is a Brownian motion with respect to a measure P(0) .  

Girsanov [2] and Rishel [l] construct the solution to ( 3 )  for a 

rather general class of 

t 

A 

f, by a transformation of measures as 

follows, Let q(x,t) be a bounded vector-valued function of the 

t' same dimension as z 

In the rest of this paper x or  x (0) will always denote t t 
the random variables constructed in (2) or ( 6 ) ,  namely the random 

variables which result when the usual It8 construction for (2) or (6) is 

used. However, the measures imposed on the x sequence may differ from 

usage to usage, and will be indicated where confusion may otherwise 

arise. The initial condition x = x in (2) or ( 3 )  will be con- 0 
sidered fixed, except where otherwise stated. Define (with respect 

t 

+ 

to p ( 9 )  

rn rn 

(4) 

N 

and the measure P(e)  by ?(dul) = exp (E((p)-P(dul). By [219 ?(O) = 1, 

and ([2], Theorem 1) zt - 1 cp(x,,s)ds E zt is a Wiener process with 

respect to ? ( e ) .  Write (2) as 

N 
t 

0 

f1(xt3t)dt 

f (xt,t)dt + S(xt,t)q(xt,t)dt + $(x t 9t)d5te 
- - 

2 

+ Since all the measures to be imposed on the process 
continuous with respect to P(S)~ the fact that xt may only be unique 

w.p.1. will not be important. 

xt will be absolutely 



1-6 

N 

Then xt(cu) solves ( 5 )  with respect t o  P(0) and the  Wiener process 
N 

( i e e e j  t he  s tochast ic  i n t eg ra l  i n  ( 5 )  i s  computed using ?(e).) 

By l e t t i n g  cp = u f in  ( 5 )  gives the  desired equation (3). See 

zt' 
A, I A  

[ 2 ] ,  Theorem 1, f o r  more d e t a i l s .  

The following extension ( [ 2 ] ,  Theorem 1) w i l l  be useful  

Let the measurable ( in  

non-anticipative w i t h  respect t o  the 

where cp (a, t) i s  bounded and E s I u(cu, t) 1 < 03, E 

Let xt denote the  unique random function which s a t i s f i e s  ( r e l a t ive  

(cu, t))u(co, t), fi(cu, t), and cp (a, t) be 

zt process, 0 < t < T, (P(S))~ 
T T *  2 1 fi(cu, t) 1 d t  < 00. 

0 0 

t o  p ( 9 )  

1 
f (cu,t)dt 

*t= 2 
f (Wjt)dt + $(mjt)dzt .  

t 
rv 

Then zt E zt - s cp(w,s)ds 
0 

i s  a Wiener process with respect t o  the  

N T measure P ( b )  G exp c O ( c p ) * P ( b )  where ~ $ ( c p )  

cp(cu,s) replacing cp(x s)  and xt s a t i s f i e s  (6). Then xt a l so  
S 9  

s a t i s f i e s  

is  defined by (4) with 

1 
f (cujt)dt 

8 (aI t ) d t  + .̂(cu, t ) c p  (aI t ) d t  + 
dxt= 

(cog t)d<, 
(7) 

r e l a t i v e  t o  ? ( e ) .  

Since the  model (2) and i t s  extension (3) a re  important in 

stochast ic  control  theory, t he  purpose of t h i s  paper i s  t o  answer 

several  questions which arise due t o  t h e  non-constructive def in i t ion  

of t h e  solut ion of (3).  

( 3 )  has a t r ans i t i on  densi ty  i f  (2) does; indeed t h e  



t r ans i t i on  density i s  ([l], eqn (24)) 

rv t+s 
p(x7t;  y,t+s) = E p (x, t; y7 t+s), 

where p(x,t; y,t+s) i s  the  t r ans i t i on  density of ( 2 ) .  
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30 

In  t h i s  section, it w i l l  be shown t h a t  the process ( 3 ) ,  as 

defined, i s  qui te  natural  model for  s tochast ic  control purposes, 

being the l imi t  ( in  the sense of convergence of the multivariate 

d i s t r ibu t ions)  of the d iscre te  time approximations t o  ( 3 ) .  

Lemma 1 ( [ 2 ] ,  Lernma 5 ) .  Let cp (co,t) denote a sequence of 
__3 ---n 
eslll 

uniformly bounded, measurable ( in  - (u,t) functions, non-anticipative 

with respect to the zt process, fo r  which f (cp ) 

probabili ty (P( - ) ) , where cp (a9 t)  i s  a lso bounded, measurable and 

non-anticipative. Then 

T 
g(q) E o n  

.3-* 

-9 

-n I.e., the  measures P (a) = exp f:(p,)*P(dru) converge strongly to the  

-n measure 

bounded measurable functions g(w) converge to Eg (LO) a 

= exp f E ( c p ) o ~ ( h ) .  The expectations, E g(w), of a l l  
rv 

We add the  following corol lary which w i l l  be used frequently. 

Corollary. 

bounded measurable function g(w), we hav 

cpnb,t) 

which are non-anticipative with respect to the  z process (P (e ) ) -  t 

+ -n E denotes expectation w i t h  respect to Fn(ch) = P ( h ) e x p  {;(qn)* 



T T Then cO(cpn) -+ co(cp) i n  probabi l i ty ,  
II_ 

Proof, The f irst  asser t ion  follows d i r e c t l y  from t h e  Lemma. 

For the  proof of  t he  second assertion, note that  EIcpn(u,t) - cp (a, t) I 
uniformly bounded, and converge t o  zero as n + o o  f o r  almost a l l  t i n  

p___ 

4 a re  

[09T] . This implies t ha t  

Q,E.D. 

The f i n i t e  difference approximation. For some Wiener process 
rv 

z define t h e  d i sc re t e  parameter process, with xA = x t' 0 OJ 

(9) X A = x A +  
n + l  n 

nn 

and t h e  interpol.ation of (9)' where xA = x* for n < t < nA + A, t n  a 

The mult ivar ia te  d i s t r ibu t ions  of t he  d i sc re t e  parameter 
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process (9) and of i t s  interpolation (lo), do not depend on the 

specif ic  Wiener process used, nor on the  method of construction, 

Hence we may construct the processes ( 9 )  and (10) i n  any converzient 

manner. Now define the 'uncontrolled' d i scre te  parameter process 

= x A +  
*n+l n 

where z i s  a Wiener process (P (* ) ) ,  and i t s  interpolation (12), where t 
XA = x~ for nn < t'< na + A, t n  - 

n d x =  t 
+ G(xn t 9  t )dzs  

h 

Since the z t t 
resp., w i t h  respect to the  measure 

and xA in (11) - (12) are  a Wiener andan Ito process, 

P(.), the  process defined by 

i s  a Wiener process with respect to the  measure 
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where x' i s  t h e  process constructed i n  (11) ( w i t h  respect t o  P(0)). 

Now, the x t  process of (11) also s a t i s f i e s  (10) w i t h  respect t o  the  

Wiener process The mult ivar ia te  d i s t r ibu t ions  of t h e  processes 

(9) - (10) constructed i n  t h i s  way m u s t  agree w i t h  t he  d is t r ibu t ions  

corresponding t o  any other construction of t he  processes (9) - (10). 

t 

Theorem 1. Assume ( A l )  - (Ab). Then the  mult ivar ia te  

d i s t r ibu t ions  of (10) converge t o  those of ( 3 ) .  

Proof, Let t h e  symbol E denote expectation with respect 

I n  view of t h e  foregoing discussion, we need only prove 

- 
t o  P(o), 

t he  convergence asser t ion (for each s e t  of r e a l  vectors 
' l , * * o , h ; , )  
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where x i s  t h e  It8 process (2), and 'p i s  given by (4). Recall 

t ha t  Elx t  - 
t 

4 
Xtl 4 0 .  n 

Next, we prove t h a t  t he  measures p(.) converge strongly 

t o  ?(.). 

I n  view of Lemma 1 and i t s  corollary,  we only need t o  show 

t h a t  

-1 Since ts (x,t) satisfies a uniform Lipschitz condition i n  x, and 

Elx: - xtl 
4 4 0 ,  we need only show tha t ,  f o r  almost a l l  t in  [ O , t ] ,  

Equivalently, we show t h a t  f o r  each f ixed 6 > 0, 8' > 0, 

f o r  su f f i c i en t ly  small A. Let E and E ?  correspond by (Ab), where 

E'  --3 0 as E --$ 0, and l e t  g1 5 E .  The l e f t  side of equation (13) can be 

bounded above by the  sum 

A 
PIXt E N (D ) I  + P{]xt - xt1 > E 6 + 6 4 t 1 s' 

€1 ' 0 -  Let €1 
Let E be small enough so t h a t  B1 < 6/2 for 

0 

denote the m i n h u m  of E and the  E which corresponds t o  E'  by (Ab). 
0 
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Then tj2 < 6 /2  f o r  su f f i c i en t ly  s m a l l  a. 

Thus (13) holds f o r  a rb i t r a ry  E' 

small A. 

By ([l], Lemma l), we have 

and 6, and su f f i c i en t ly  

- 

P 
where c i s  proportional t o  the bound on lq(ujt)l . Let g,(u) --j g(u) . Then 

m 
wnd. Since exp i h!Xa 5 

j=1 J t j  
m m 

exp i c hjxt , l e t t i n g  g = exp i ,Z ~ 1 . x ~  and. g = exp i c X3Xt , 
j=1 J tj9 j=l j a j=1 j 

and using the  strong convergence of p(*) t o  ? ( a ) ,  gives 

Theorem 2. Assume ( A l )  - (Ab). Then the  solution x of (3) t -  
i i s  unique, i n  the sense t h a t  i f  xt9 i = 1,2, solve (3) with t h e  Wiener 

~ 

4 i processes z the  mu'l'tivariate d i s t r ibu t ions  of  the  process x i = 1,2, 
t 9  t' 

are  the  same. 

h N Proof. Suppose t h a t  the I t o  and Wiener processes x and zt 
t 

solve (3) with respect t o  the  measure ?( - ) .  Define the measure 



1-14 

P(W) = ?(du)exp cE (-$) 

T -  The s tochast ic  i n t eg ra l  i n  C 0 ( - c p )  

measure ?(*) .  But, since P(-) and ? ( a )  itre absolutely continuous 

w i t h  respect t o  each other, the random variable  

defined uniquely w.p.1.  w i t h  respect t o  P ( . )  a lso.  Now zt f zt + 

S tG-l(xs, s)f (xs, s)ds  i s  a Wiener process (P(.))  and (2) i s  an It: 
0 
process ( w i t h  respect t o  the  j u s t  constructed z t ,P(*) ) .  S ta r t ing  

w i t h  the  constructed t r i p l e  

3.)9+t by the  usual  Girsanov transformation on (2).  

i s  some Wiener process z ( w i t h  respect  t o  P(.)), and It: process ( 2 ) ,  

so  that  Gt 
transformation on z and the xt given by (2).  Binee the mult ivar ia te  

d i s t r ibu t ions  of the d iscre te  approximations (10) do not depend on the 

Wiener process, and converge t o  those f o r  ( 3 )  for any solution t o  (3) 

i s  defined w i t h  respect t o  the 

T, 
Cp' (u,s)d; i s  S 0 

N 

h 

P(.), zt,xt, we can re-obtain t h e  o r ig ina l  

I.e., there  

t 
and the  solut ion t o  (3) can be constructed by the Girsanov 

t 

which i s  obtainable by a Girsanov transformation, it i s  c l ea r  tha t  the  

mult ivar ia te  d i s t r ibu t ions  of ( 3 )  are  unique. Q.E.D. 
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4. 

Define the processes (16) and (17) constructed by the Girsanov 

transformation on (2) w i t h  measures 

Let Zn and E denote the expectation corresponding t o  (16) and 

(171, respe 
h A 

fn(x,t) i s  t o  be an approximation t o  f (x , t )  (or) 

equivalently, un(x,t) i s  an approximation t o  u(x9t) ,  and fn(x,t) z 

f (x, t, un(x, t) ) ) e 

costs as un 3 u or f 4 f ,  The resu l t s  are of interest ,  since we 

A 

n 
The next two theorems consider the convergence of 

h A 

n 

may desire t o  approximate the discontinuous control u(x, t )  by a smooth 

control un(x9t)  which i s  smooth i n  x and where un(x9t )  u(x , t )  

except in  a neighborhood of the discontinuity s e t  . Dt 
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bound 
__I_ 

Theorem 3.  

d and Borel m 

Assume (Al) - (A3). - L e t  k (x , t )  - and b(x) be _. 

A 

asurable. - Let fn(x,t)  + ?(x,t)  f o r  each x Dt9 
h 

and ? e - Then - where fn 

rn rn 

L e t  un(x,t) and u(x, t )  be Borel measurable, Let k(x,s,u) - - - 
k(x,s,un(x,s)) -$ k(X,S,U(X,SH, - as  

n + "0, except for  X E Dt, for t > 0. Then (18) holds t rue  i f  k(x,s,u) 

replaces k(x, s )  . 
__. 

Proof. L e t  g(x) be bounded and Borelmeasurable. To prove 
_II 

the f i r s t  asser t ion,  we only need t o  show t h a t  

T P T  If fo(Tn) + fo('p), then, by Lemma 1, the  measures Tn(e)  
strongly t o  ' ? ( e ) >  and (19) holds. 

But, as i n  the  proof of Theorem 1, f (q ) + c0(cp) 

converge 

T P T  
O n  i f  

which holds since 

P{xt E Dt) = 0. 

Pn(x,t) -$ f\(x,t)  except f o r  x E Dt9 where 

Continuing t o  the  second assertion, we use the  argument 
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which l ed  from (15) t o  the end of the  proof of Theorem 1, 

show tha t  

We must 

Since, by the first par t  of the theorem, 

we need only show tha t  

But, hypothesis, the integrand i n  the l e f t  side of (20) converges t o  zero 

P ( . ) > .  Then an argument ident ical  t o  (13) gives the conclusion (20). Q.E.D. 

The next theorem concerns the cost  approximation for a process 

which i s  stopped, not a t  fixed time 

T = inf (t: xt ,d R ) ,  where 

min [ ~ ( a ) )  ~ T] depends on the path xt(w), where x i s  given by (2).  The 

value of the random variable 

process ( 3 )  ( w i t h  ?n or f used) as fo r  ( 2 ) ,  since the process paths x 

are  the same. 

T, but a t  the random time 

R i s  a fixed bounded open se t .  Note t h a t  

t 

min [T(w),T] i s  the same f o r  the transformed 
A 

t 
Only the measures a re  changed. Note tha t ,  since the Fn a re  

uniformly bounded, there i s  a constant K < m for  which 

This i s  implied by the fac t  t ha t  u(x)us(x)  > aI, where I i s  the ident i ty  

matrix, for some a > 0.  

- 
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Theorem 4. Assume the conditions of the second paragraph 

of Theorem 3 .  Then 
~ 

Proof, Fix T < 00, F i r s t  we show t h a t  (21) holdsfor 
P 

T I l  a E min (Tg7)  replacing T. Since the measures ( for  the  

processes on [09T] f o r  each T < 00) yn(e) converge t o  ?(e) 

strongly, t he  expectations of any bounded and measurable function of 

o converge, as n Q). Let Ia(s) = 1 if T > s and 0 i f  a < s o  Thus 
B 

fo r  s < T and, as i n  the  proof of Theorems 1 or 3 - 

Thus (see proof of Theorem 3)(2l)  holds with T fl 'G replacing 4 .  - wn 
E a < K < Q), ET < K < coJ we have Next, since - - 



(24) 

as + o  

) 1  -,o E Ib (XT)  - b(xTnT 
-n 

as T + OJ, uniformly i n  n. Equation (21) follows from (22) - (24). Q.E.D. 
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5 .  Local propert ies  of ( 3 ) .  

In  t h i s  Section we give some of  t he  l o c a l  properties of ( 3 ) ,  

as defined by the Girsanov transformation. 

a l l  the  propert ies  which it would have i f  f were Lipschitz i n  x. 

Inde d, ( 3 )  has v i r t u a l l y  
h 

Theorem 5 .  Assume ( A l )  - (A4) Let xn and x denote - t -  t 
n the  processes given by ( 3 ) ,  w i t h  in i t t fa l  conditions 

x = x. (We use E and % f o r  t he  corresponding expectation 

operators e ) Then the mult ivar ia te  d i s t r ibu t ions  of xn converge 

t o  those of xt as x + x e  

xn = x and 
__e 0 

.vn 
0 - 

t 
n - 

n 

var iables  defined by ( 2 ) J  corresponding to t he  i n i t i a l  conditions 

and ' x ,  resp.  

'proof, In  the  proof, xt and x denote the  random - t 
n x 

'1) ***,'m, We must show that, f o r  any s e t  of r e a l  vectors 

where c:(cpn) i s  (4) w i t h  x i  replacing x Now to  

m m n P  exp i C ~ 1 . x ~  exp i C ~ 1 . x  
j= l  J j j= l  J *j 

A s  i n  the proof of Theorem 3, we only need to show t h a t  
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T ~ P T  -n {,(cp ) + ( (cp), for this implies that 
T n P T  proof of Theorem 3 ) ,  But, l0(cp ) --j $,(cp) if ?(x:,t) 3 z(xt,t), 

as x + x. Now, (€,E' are defined by (A4) and c1 5 6) 

P ( e )  +?(e) strongly (see 
0 

n 

P{x E N (D ) }  E 6 1 + 6 2" t El t 

Choose E' > 0 and 6 > 0. Choose E so that B2 < 6/2, fo r  < eo. 

(This is possible since x has a density.) Let rzl denote the minimum 

of E~ and the E corresponding to E' by (A4). Then for large enough 

n, < 6/2 which proves the assertion. Q.E.D. 

0 

t 

Theorem 6, K and K denote real numbers. Fix T, and. let 
_I i ___3 

x = x. Assume (Al) - (A4) .  Then for 0 < t < T, 0 -9 _D__ - -  
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where o(t)/t + O  - as t 4 0  uniformly in x, for 0 < t - < T. - 
2 2  t 

(E(xt-x)(xt-x)' - u(x9s)o' (x,s)dsl - < K,(Ixl +l)t 
0 

(30) 

Let denote the minknum u-algebra which measures - r  
x s < r. Then w.p.1.' s' - -.-.'--9 

o(t) sa.tis$ies the a?oove (30) a Also ____9 w.p.l., 
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Proof. Proof of (26). Note t h a t  a l l  moments of (3) a re  - 
f i n i t e  since a l l  moments of (2) a r e  f i n i t e  and 

2 t - 2  t 
N 

Using the estimates E I /  U(x s)dzsl 

($ I f lds)  

< % $ Iu(xS,s)I ds and 
- 0  

S’ 
0 

2 t 2  t 
< t $ f ds, the boundedness of and the growth condition - 

0 0 

(Al) i n  u and fi on equation (3) yields  

(33)’ together with the f in i teness  of 
N 

E1xt12 implies (26). The proof 

of (27) i s  ra ther  standard and i s  s imilar  t o  t h a t  of (26)9 the  main 

difference being the use of the martingale estimate 

and the de t a i l s  are omitted. 

The proof of (28) i s  essent ia l ly  the same as’that for the 

case where fi i s  Lipschitz i n  xg and i s  omitted. 

Proof of (29 ) .  We have 
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t t 
N E J Ifi(xs,s) - fi(x,s)lds < K xs-xlds < K7 t3'2(l+ 

I_ - 
0 0 

(344 

Also 

N h  A 

Is E Elf(x S) - f(x,s)l = 1 S j  
lxs-x 

+ J  
I xs-x 

X12)1/2. 

Note that, by the first part of (Ab), x 

small E) say E < eo (since x Do). Also, using the boundedness 

of f̂ and Chebyshev's inequality, and (28), 

N (D ) for sufficiently 
G O  

- 

A 

where (see (Ah)) we define E' = E * ( € )  = sup I?(x,s) - f(y,s)l and 
I x-Y 1 <e 

(Ds) 

E' + o as E + 0, uniformly in x, fo r  x ,d N€ (D) , for any 
fixed eo > 0 ,  

0 

Let E: = s 1/4 Then 

where o(t)/t + O  as t + O  uniformly in x9 for x ,i NE (a), for any 

co > 0. 
3 

(34a) and (34b) imply (29),  for sufficiently small t. 
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The proofs of (30) and (32) a re  the same f o r  the case where 
A 
f i s  Lipschitz - i f  131 i s  replaced by i t s  supremum i n  a l l  estimates.  

(The dr i f t  terms do not e f fec t  the r e s u l t  as long as the discontinuous 

term i s  bounded.) 

Proof of (31). More generally than (28), it can be shown that,  

w.p.l., 

It follows from t h i s  and Schwarzfs inequality t h a t  

Also, f o r  s > r, 

where the  in t eg ra l  i s  evaluated a t  

the t r ans i t i on  density. We may bound Is by 

x = x,((u), and c(x9 r; y:, s )  r is 
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where 

< K c1  
'1s - 13 s 

where (see (Ah)) Ix-yI < cS and x (Dt) imply that 

Ihf(x,t) - f(y,t)l < E; where E' + O  as E + O e  
S 

1/4 n 
Letting E = s 

S S S 
- ~*~f(s)[l+[x~l 2 ] 1/2 , where e o s t ( s )  + O  gives Ils + 12s + 13. - 

as s + 0, uniformly in x NOW r *  

t 
c;' (s)ds = o(t) 

0 

uniformly in xry which establishes (31). Q.E.D, 
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Abstract 

Stochastic d i f f e r e n t i a l  equations whose dr i f t  terms do 

not s a t i s f y  the  usual  (It;) Lipschitz or l i n e a r  growth conditions 

in  the  s t a t e  occur frequently as models i n  s tochast ic  control  

theory. Local s t a b i l i t y  propert ies  a re  useful  f o r  proving global  

existence f o r  ordinary d i f f e r e n t i a l  equations whose r i g h t  hand sides 

grow too fast  or are  not Lipschitz i n  the  s t a t e .  

Local s tochast ic  s t a b i l i t y  property t o  prove global  existence, 

s t a b i l i t y ,  ergodicity,  the strong Markov and other propert ies ,  f o r  

a c l a s s  of diffusions which occur f requent ly  as models. 

Here, we use a 



2-1 

1. Introduction 

For a vector x = {x.] and matrix a = {a. .], define the  
1 1J 

+ geneous It$ stochast ic  d i f f e r e n t i a l  equation 

++ where a(.) s a t i s f i e s  growth and Lipschitz conditions of the t m e s  

and z ( t )  i s  a normalized vector valued Wiener process. If 

then the  I t o  existence theory i s  applicable t o  (1) and the  s t a b i l i t y  

propert ies  can be discussed [l]. If (3b) holds local ly ,  but  (3a) i s  

violated,  a ' l oca l '  s t a b i l i t y  property([l] ,  Theorem 8, Chapter 2 ) 

ensures the  existence of a solut ion t o  (1) f o r  a l l  t > 0. - 
+ The homogeneity condition i s  not essent ia l ,  except i n  Section 4.  

K and Ki always denote r e a l  numbers; t h e i r  value may change from 

usuage t o  usuage. 

++ 
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Recent investigations [ 2 - 5 ]  have studies an important c lass  

of equations (l), where f ( - )  i s  allowed some discont inui t ies .  Re- 

2 write (1) i n  the form (XI and x are  vectors) .  

i h 

where we assume t h a t  the f and cr s a t i s f y  (3) and ( 2 ) ,  respectively, 

and $(x) has a uniformly bounded inverse. (Thus ^a-'(x) s a t i s f i e s  

( 2 ) . ) ,  but f ( . )  does not necessarily s a t i s f y  (3). In the sequel, 

we prove existence, uniqueness, and other properties of ( k ) ,  when 

neither (3a) nor (3b) necessarily holds, but a ' l oca l '  s t a b i l i t y  

property obtains, and a l so  t r e a t  the problems of asymptotic s t a b i l i t y ,  

the existence of a unique invariant measure and the convergence of 

the measures of (1) t o  the invariant measure. 

h 

Diffusions of the type (4) occur frequently i n  control 

applications.  Consider, for  example, a 'white noise' driven n ' t h  

order d i f f e r e n t i a l  equation where f i s  a 'bang-bang' control 

taking the values {+l,-l], or which may be discontinuous on a 

smooth 'switching curve',  and tend t o  i n f i n i t y  i n  cer ta in  

direct ions.  Also models such as 

h 

dxl = X2dt 

d x =  
dx2 = -(x +X 3 ) d t  + adz 

1 1  

are sometimes used, and the existence, and asymptotic character of 

the corresponding measures are of i n t e re s t .  
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2. Mathematical Preliminaries 

Assume 
h 

(C1) f i  and ts s a t i s f y  (3) and (2), respectively,  and 

;-l(x) i s  uniformly bounded. ?( - )  i s  a vector valued Bore1 func- 

t i on  of x which i s  bounded i n  any compact s e t .  

(C2) The process ( 5 )  has a t r ans i t i on  density p(x; t , y ) .  

((3) (Acondition on the d iscont inui t ies  of f . )  L e t  sm 
A 

denote a shpere of radius m, whose center  i s  the  or igin.  Let NE(A) denote 

an €-neighborhood of the  set A and p(A) t he  Lebesgue measure of 

A.  Suppose there  is a (discontinuity) s e t  D so t h a t  

as E + 0 f o r  each m < 0. For each E* > 0, l e t  there  be a,n E > 0 

so  t h a t  Ix-yl < E implies Ihf(x,t) - f (y , t ) l  < E' uniformly i n  x 

i n  bounded regions, provided t h a t  x N ( D ) .  

h 

E 

Assume (Cl). Let R denote the  sample space. We use the  

notation (a, z (t) , ,p)  f o r  the Wiener process on [ 0 , m ) 9  where 

measures Z ( S ) >  s < t and z(r2) - z(rL) i s  independent of  

t < r < r2, and P i s  the  measure on a l l  the  a We say t h a t  z ( t )  - 1 -  
i s  a Wiener process on (a, ,P) .  Let x ( t )  be the unique solution 

t o  the  It8 equation (3) 

. -  
f o r  

I 
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( 5 )  

1 1  

2 2  

dx = f (x)dt  
d x =  

dx = f (x)dt  + 2fx)dz 

We say t h a t  x ( t )  is an It$ process with respect t o  (52,z(t),gt,Px)p 

where Px denotes the probabi l i ty  given t h a t  x(0) = x (and Ex 

denotes the  corresponding expectation). E and P denote expectation 

and probabi l i ty  f o r  functionals of z ( t ) .  Define R T as  the sample 

space f o r  z ( t ) ,  t - : T. Suppose t h a t  

w.p.1. 
T ^ l  la- (x( t ) )?(x( t ) )12dt  < m 

0 
( 6 )  

(which i s  ce r t a in ly  t rue  i f  f i s  bounded). Define 

and suppose t h a t  

(7) 

A ( ( 7 )  holds for  a l l  T < 00 i f  f i s  bounded.) Then the probabi l i ty  
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-T + 
measure P defined by 

cu 
i s  a measure on the  gt, t < Te The process z ( t ) ,  t < T - s 

" z ( t )  = z ( t )  - t%l Q (x(s))?(x(s))ds 

0 

i s  a Wiener process on (~2~,.@~,?:)~ and the process 

f1 (x) d t  

f (x)dt + f ( x ) d t  + :(x) [dz - $-l(x)"fx)dt] 

d x =  
h 2 

( 8 )  

- f l (x)dt  
- 

2 
f (x)dt + ^f(x)dt + ^a(x)d% 

i s  an It; process with respect t o  The construction 

was f i r s t  done by Girsanov [4], and exploited by Benes [?I, Rishel [2] 

and then Kushner [ 3 ] ,  f o r  several  control problems. 

space QT9 the a-algebras and t h e  random variables  x ( t )  f o r  

the Wiener process 

same as those f o r  t he  Wiener process 

(n,,z(t),B ,'UpT) t x -  

Note the sample 

,Px) "T a r e  the ?(t), and It; process 

z ( t )  and It$ process (?), for 

t < T. Only the measures have been changed. The process (8) i s  

constructed by a transformation of measures on the  ' n i ce r '  process ( 5 ) .  
- 

The measure 

Wiener process ;(t). 
depends on the  i n i t i a l  condition of ( 5 ) ,  as does the 

X 
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The following f a c t s  (drawn from [2-4]) about (8) w i l l  be 

needed. Assume t h a t  ? i s  bounded and t h a t  ( C l - 3 )  P hold. 

(01) ([?I, Theorem 5 ) .  The mult ivar ia te  d i s t r ibu t ions  

of (8) a re  continuous with respect t o  the  i n i t i a l  condition x(O), 

( i n  the sense t h a t  t he  cha rac t e r i s t i c  functions are continuous i n  x(0) ) .  

(02) ([ 3 1, Theorem 2 ) .  The solut ion t o  (8) i s  unique 

in  the sense t h a t  any two solutions t o  (8) have the  sane mult ivar ia te  

d i s t r ibu t ions  

(03) E: sup lx(s )  - X I  2 5 Klt(l+lx12), t < T 
s 

t>sx  - -  
-T 4 2 4 sup Ix(s) - X I  I < K l t  (l+lxl ) 9  t - < T 

t>sx EX 

NT 
where E i s  t h e  expectation given x(0) = xJ and K1 depends on the 

bound on 8. 

[3] Theorem 6. Kl depends on the  bound on f .  

X 

The proof of (03) i s  close t o  t h a t  of (27) - (28) of 
h 

(04) If the  process ( 5 )  has a density p(x; t 9 y ) 9  then 

so  does (8) and the  density of (8) i s  any version of ([2], Lema 1)9 

(boundedness of ?' i s  not required i f  (6) - (7) hold)  for t < T 
ma... 

Also (? i s  not required t o  be bounded i n  ( 0 7 ) ) .  

0 5 )  ([)+I9 Corollary t o  Lemma 3). Let g(w) be Bt 
-T 

measurable with ExIg(cu)l < m9 and t < T. Then, f o r  s < t < T, w.p.1. - e -  
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(The eq1 ation a l so  ho 

Qf gs*) 

ds i f  Q i s  replaced by any sub a-algebra s 

N -T 
F ix  T, and define z ( t )  and Px by the Girsanov transformation. 

-T Write ;(t) as z (t).  Suppose t h a t  (6) - (7) hold f o r  a time Tl > T, - _I 

T T 
m T 1  - 1  T - 1  and define the corresponding R z (t), P, . Then z (t) = 2 (t) 

T, , rn 
.uL1 1. -T for t < T, and on s e t s  B of 9 we have P,(B) = Px (B). This 

follows from (05) since (% 
- T 

i s  the cha rac t e r i s t i c  function of t he  set B) 

-T1 -T Thus Px i s  an extension of Px. If (6) - (7) hold f o r  each 
N 

T < m, we can replace RT by R and define a unique measure Px on 

a l l  the  

Then G ( t )  w i l l  be an It$ process with respect t o  

(0, G ( t ) ,  gt,Tx) 
hold f o r  a l l  T < 00 if f i s  bounded. Let 

gt, t < 00, which w i l l  be consis tent  with the ?: on 

( R j g t , ? x ) ,  and. 

an  It; process (for a l l  t < a). Both (6) - (7) 
n 

tx - 
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h 

Let V(x)  denote a non-negative twice continuously d i f -  

ferent iable  function which tends t o  i n f i n i t y  as 1x1 + w. Define 

for  x 6 Qrv and f (XI = 0, 
A A 

= {x: V(x) < N} and l e t  fN(x) = ?(x) 
N 

x 

d i f f e r e n t i a l  generator of the process (8) and wri te  fo r  the 

d i f f e r e n t i a l  generator when 

uses a s t a b i l i t y  idea t o  prove existence f o r  (8), for a l l  

BrJ. Define CT = {CUI x ( t )  e &NI t E [O,T]}. Let 2 denote the N 

A 

f i s  replaced by ? i n  (8). Theorem 1 

t < m, 

Theorem 1. Assume (Cl) and the above conditions on V(x). 

Let ?v(x) < o - f o r  x not i n  some a < m. __p_ Then - - 

(9) 

fo r  a l l  T < m, and 
s_ 

t < w  

The solution t o  (8) 

respect t o  (a,;(t), 

(C2-3), it i s  unique ( 

t < m, 
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Remark. Let f(y),cu(y) s a t i s f y  ( 3 ) ,  (2) local ly ,  and l e t  

g1 

f (y),cr(y) . If V(x) and tlV(x) have the  propert ies  required i n  

Theorem 1, then the  proof can be a l t e r ed  t o  y i e l d  existence and 

denote the  d i f f e r e n t i a l  generator, with coef f ic ien ts  determined by 

uniqueness f o r  t h e  process dy = f ( y ) d t  + a(y)dz. 

h 

Proof. Let replace f ,  i n  (8), where N > a. Let - 
y9T exp c0( TPdP ) 

and the  extension of ‘“N7T Px t o  the  a-algebra on R.  Write 

the Wiener process corresponding t o  “PN as 2N(t) (instead of ;(t)). 

Then (8) i s  an I t o  process with respect t o  

v i r tue  of (03) ( for  x = x(0) )  

denote the  transformed measure with T9’ (A)  = 
A 

X 

X 

X 
h (Q,;N(t)Jgt,q). By 

-N 
Px( sup lx(s) - XI > f > 01 + o  - 

t > s x  

as  t + 0 ,  uniformly f o r  x i n  compact in te rva ls .  Also 

-N + i V(x) < 0 i n  $nr - Qa - &N e Let z denote the  f i r s t  exist+’ time 

of the  path x ( t )  from &N - Qa - ha ,and  t n T min ( t , z ) .  

Then, by I t c l s  Lemma E:V(x(t fl 7)) - V(x) < 0 f o r  x E % - Qao 

Since 

, a  - 

- 

i s  the  boundary of the s e t  
++ If T i s  undefined f o r  some path, s e t  z = +oo. Note t h a t  t h e  e x i t  

time T(W) (as a path funct ion)for  x ( t )  and TN(t )  a re  t h e  same,” 

but t h e i r  d i s t r ibu t ions  may d i f f e r .  



2-13 

p V ( x ( t  fl T)) - a - < (N-a)p{x(s) X h i t s  % before aa and 

leaves i n  [ O , t ] ) ,  

X 

we can conclude t h a t  

(11) q { x N ( t )  h i t s  % before &a and leaves %,a in [o,T1l 5 v(x)-a N-a - = '3 '  

We w i l l  show t h a t  f o r  each E > 0, there i s  an N < m so  

tha t  

Fix a1 > a. Let x E ?Qa. There i s  a so > 0 so  t h a t  

Let A E Then, since ?(x(t))  = ? (x ( t ) )  on [O,T] 

f o r  M > N and cu e CN, T we have - 

(03) h-pl ies  tha t  
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But (13) implies t h a t  t he  constant K2 depends only on t h e  nwnber a1 

and does not depend on N, f o r  N > ai.  Thus, we can assume t h a t  K2 

does not depend on N. 

T Let GN denote the  event t h a t  x ( t )  goes t o  ?Qa before 

$ (or  never leaves %,a), then takes  more time than T/n E 61 t o  

reach &?, then returns  t o  &a no fewer than n - 1 addit ional  

&a 7 
times and a f t e r  each re turn  takes no l e s s  than 

“1’ 
El t o  reach 

1 
before leaving BrJ f o r  t he  f i r s t  time. Then y{C:] > P I G T ]  and 

X - x N  

P I G T ]  > 1 - - c3, where 
X N -  

and N and n can be chosen so  t h a t  q { G i ]  > 1 - E. - 
m e r e  i s  a unique measure F~ on which i s  consis tent  

X 
-N T with the  Px on the  s e t s  CNs Furthermore, ( the l e f t  hand inequal i ty  

i s  [4], Lemma 2) 
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t < T, i s  a Brownian motion 

x ( t ) ,  t < T, an I t o  process with 

Since E: i s  arbi t rary,  (9) holds, z(t), - 
A 

,?:) and - with respect t o  

respect t o  (RT,G( t ) ,  gt,PX). -T Furtheremore, since T i s  a rb i t ra ry ,  

we can replace t < T by t < 00 and FT and R by FX and Q. - X T 

The process (8) i s  unique in  the  following sense. Suppose 

i N  t h a t  both xi(t), i = 1,2  s a t i s f y  (8). 

processes which r e s u l t  when replaces f .  Suppose t h a t  i f  

Let x 9 (t) denote the  
h 

i, N x (t) E: &N f o r  a l l  t E [O,T], then xi(t) coincides with xijN(t) 
i , N  on [O,T]. Then the  uniqueness of the  x (t) ( i n  the sense of 

mult ivar ia te  d i s t r ibu t ions )  and the  

f o r  M > IV (the do not depend 

x (t) i n  the sense of mult ivar ia te  
i 

on i) imply uniqueness of t h e  

d is t r ibu t ions .  Q.E.D. 

Remark. Lemma 7 of [4] would appear t o  y i e l d  existence f o r  
h 

a la rge  class of unbounded f .  Bu t  an examination of t h e  proof shows 

t h a t  i t s  content i s  t h e  following. Let processes ( 5 )  and (8) e x i s t  

with respect t o  some Wiener process, with ( 5 )  being unique, and 

I la 
( 5 ) .  

6-1 
(x(t))hf(x(t))]*dt < 00 w.p.1, where x( t )  

Under some minor subsidiary condition, it i s  proved t h a t  

i s  t h e  solution to 
0 
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where t h e  expectation corresponds t o  (9).  

by a Girsanov transformation from ( 3 ) -  

in tegrabi l i ty  property and existence f o r  (8) must be established 

f i r s t .  But these properties a r e  e s s e n t i a l l y  the desired r e s u l t .  

Then (8) can be obtained 

But both the square 

3.  Markov Properties of ( 8 )  

WTite (C4): I n  each compact x set, there i s  an a > 1 

and M < OB so  t h a t  

I P y x ;  t , Y )  5 M < me 

Theorem 2. Assume (Cl) ( C 3 )  and the condition on V and 
_3__ 

N 

%V of Theorem 1. Then the process (8) i s  a strong Markov process. 

If (C4) holds, f o r  some a > 1, (8) i s  a strong F e l l e r  process. - 

Proof. T he terminology of Theorem 1 w i l l  be used. By _ps 

Theorem 1, the process i s  defined on the  time i n t e r v a l  

has continuous paths w.p.1. 
[O,m), and 

F i r s t ,  we prove t h a t  (8) i s  a Markov process. Let &3: C ;Bt 
measure x(s ) ,  s < t .  Define the t r a n s i t i o n  function N Px(x; %,A) = - 
Iu 

Px{x(t) E A}. Since t h e  r i g h t  hand term of 
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rv 

i s  a Bore1 measurable function of x, so i s  P(x; %,A) f o r  each 

A E: 9;. Now assume t h a t  ? f The Chapman-Kolmogorov 

equation holds since, by (05) and the fact t h a t  ( 5 )  i s  a Markov 

A 

proces s, 

N w.p.1. 

ess  on 

Markov process. 

Thus by the  def in i t ion  Dynkin [6, Chapter 31, x (t) (the Its proc- 

(Q9zN(t), gt,q) corresponding t o  the  use of p) i s  a 

rv 

The a-algebras 9; a l so  measure (8). The measure Px f o r  

the unbounded 

(05) and the  dominated convergence theorem, 

?, has the correct  conditioning propert ies  since, by 

cv 

3 Ex x ( t+ s ) EA) CN 
t+ s 

rv 

- - Ex(s)[X{x(t)€A} exp r 3 3 1  = P(x(s);t,A) 

w.p.1. Then, by the  def in i t ion  ~6~ Chapter 31, (8) i s  a Markov process. 
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+ (8) i s  a F e l l e r  process, hence a strong Markov process [6, 

Theorem 3.101. 

' s trong'  Feller++ property w i l l  be given next, under the  addi t ional  

condition (C4) e 

The proof i s  omitted. The proof of t h e  stronger 

Let (C4) hold. 
A 

Supposing t h a t  (8) i s  a strong Fe l l e r  process i f  f i s  
A 

bounded, we show t h a t  it i s  a strong F e l l e r  process f o r  unbounded 

Let g ( - )  be bounded and measurable. Then q g ( x ( t ) )  GN(x) i s  

continuous i n  x, f o r  t > 0. 

f .  

Write G(x) = $,g(x(t)), Then 

uniformly i n  any compact x se t .  Thus, G(x), being the  uniform 

l i m i t  of continuous functions, i s  continuous. 

A 

Finally,  suppose f i s  bounded and (C4) holds. Reproducing - 
an argument of Rishel [2], we show f o r  each compact 

a f3 > 1 and M < Q) s o  t h a t  (q i s  t h e  densi ty  of (8) - see (04)) 

x set ,  there  i s  

+ 
A process x ( t )  i s  a Fe l l e r  process i f  E f (x ( t ) )  i s  a continu.ous 
function of x, i f  f ( x )  i s  continuous an8 bounded. 

f-t x ( t )  i s  a strong Fe l l e r  process i f  Exf(x( t ) )  i s  continuous i n  x 
f o r  m y  bounded Bore1 function f(x) and t > 0. 
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t h  Define r(x; t ,y )  E Zx[exp Co(f)lx(t) = y]. Let m-' + n-' = 1, 

and note tha t ,  for any p > 1 and compact x set, there  i s  an 

N~ < - so t h a t  Zxexp P t0(f) - < N~ (r4lp Lemma 1). t h  
Let p > p,, p > 1. 

By Holder' s inequal i ty  

We can choose f3 > 1, p > @, , m, n and p > 1 so t h a t  (p-p,)m = a, 

pn = p, p,n = 1, which , together with (Ck), proves (14). Equation (14) 

implies tha t ,  as x var ies  i n  any compact se t ,  t he  family q(x; t , y )  of 

functions of y i s  uniformly integrable .  This, together with t h e  con- 

t i n u i t y  ( in  x) of €'(xi t, (--,a)) f o r  any vector a ( r e c a l l  t h a t  t he re  

i s  a density) Implies t h a t  ?(x; t , A )  i s  continuous i n  x f o r  any Bore1 

cu 

s e t  A, which L-nplies, i n  turn, the strong Fe l l e r  property. For more 

de t a i l ,  note t h a t  the boundary of any rectangle  i n  t h e  range space of 

x ( t )  has zero probabili ty,  and t h a t  ?(xi %,A) i s  continuous i n  x 

i f  A i s  t he  sun of rectangles (open or closed).  Let ?(xi t , A . )  be 

continuous i n  x for  a col lect ion of sets A which increase monotonically 

t o  A 

J 

j3 

The second in t eg ra l  goes t o  zero as j 4 -  uniformly i n  x i n  any 
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compact set, by the  uniform in t eg rab i l i t y  of 

f i r s t  i n t eg ra l  i s  continuous, so i s  t he  uniform l i m i t  ?(x; %,A). 

q(x; t , y ) .  Since the  

Q.E.D. 

Properties of t h e  Measures of (8) 

In  [$I, under the  conditions (Dl) - (D5),  Khasminskii 

proved t h e  existence of a unique a - f i n i t e  invariant  measure f o r  a 

process x ( t )  with a s ta t ionary  t r ans i t i on  function P(x; %,A) 

under the  conditions ( D l - 5 ) .  

- 

- 
(Dl) For any E neighborhood NE of x, 1 - P(x; t N fx 

3 s  

o ( t )  uniformly i n  x in  any compact s e t .  

(D2) The process i s  a strong Markov and strong F e l l e r  

process. 

(D3) ?(x; t , U )  > 0 for  a l l  open sets U and t > 0. 

(D4) 

(D5) The process i s  recurrent.  (There i s  some compact 

The pathe a re  continuous w.p.1. 

s e t  K and a random time T < m w.p.1. so t ha t  X ( T )  E K w . p . l . ,  

f o r  each i n i t i a l  condition. ) 

In  [9], Kushner applied the  r e s u l t  i n  [8] to obtain a 

suf f ic ien t  condition f o r  the convergence of the  measures of c l a s s  of 

diffusions to a unique invariant  measure. Theorem 3 includes t h e  

p r io r  r e s u l t  as a spec ia l  case. Z a k a i  [lo] has t r ea t ed  the  invariant  

measure p rob lm f o r  a c lass  of diffusions satisf 'ying (2) - ( 3 ) ,  using 
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a general method ofBenes [ll]. 

E l l i o t ' s  method involves a condition on a Lie algebra generated by 

A s imilar  problem i s  t r ea t ed  i n  E l l i o t  [12]. 

ce r t a in  functions of t h e  diffusion coeff ic ients ,  which i s  hard t o  

check i n  spec ia l  cases,  The r e s u l t  of Benes [ll] (concerning only 

existence of an invariant  measure) uses the condition t h a t  

lim P(x; t , K )  3 0 f o r  a l l  compact s e t s  K. This would not always 
1x1 --)= 

hold under our conditions.  E.g., the  solut ion t o  2 + 2 = 0, reaches 

x ='1 

pect a similar r e s u l t  f o r  

i n  a time t h a t  i s  bounded as x(0) + w, and we would expect a 

dx = - 2 d t  + adz. 

Theorem 3. Assume (Cl) - (C4), and the conditions on V ( . )  

i n  Theorem 1, except l e t  z V ( x )  < -E < 0 outside of Qa. L e t  ( 5 )  - - 
x. Then (8) 

L__ 

has a unique invariant measure and 

fo r  any X. Both 
9.-p- 

N 

PCx; t ,A and 
___s Q@ 

as 

have nowhere zero dens i t ies  e 

Remark. Theorem 3 only deals with invariant  measures, but  

almost a l l  of s t a b i l i t y  r e s u l t s  i n  [l] can be ca r r i ed  over t o  the  

problem with discontinuous drift  terms. 

Proof, The second inequal i ty  of (03)  implies (Dl) fo r  
~ 

A 

bounded f, and, hence, f o r  the processes xN( t ) -  But, if (Dl) holds 

f o r  each xN(t), it holds for  (8). (D2) i s  proved i n  Theorem 2. 

t "  
Since Zx[exp t o ( f ) l x ( t )  = y] > 0 w.p.1. and p(x; t , y )  > 0 f o r  
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‘v 

y by assumption, q(x; t ,y) (the density f o r  P(x; t , A ) )  i s  posit ive 

fo r  almost a l l  y (Lebesgue measure). This implies (D3) .  (D4) i s  

a consequence of Theorem 1. 

fo r  a l l  large x. (See Theorem 4 i n  [ 9 ] ) .  Indeed, the average time 

- &a (for x(0) = x) i s  bounded above by to leave the s e t  

(V(x)  - a)/. < Q). 
(Dl -3 )  hold. 

(D?) i s  a consequence of Zv(x) < -E: < 0 
I 

$nr - Qa 

This together with (11) gives (D?). Thus a l l  

Q(A) s a t i s f i e s  

Thus &(A) > 0 f o r  a l l  se ts  A of posit ive Lebesgue measure and has 

density ./ Q(&)q(x; t ,u) ,  which must be posit ive almost everywhere. 

For a process with a t rans i t ion  density and a unique in-  

variant measure a(.) with a nowhere zero density, Doob [7, 

Theorem 51 proves tha t  P(x; t , A )  + & ( A )  as t -+- f o r  any x. Q.E.D. 
Tv 
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